覆盖 700 余种风险,MIT 发布最全 AI 风险数据库
麻省理工学院(MIT)研究人员近日发布了一个号称迄今为止最全面的AI风险动态数据库,涵盖了43大AI风险类别共计777种AI风险。 这是业界首次尝试全面整理、分析和提取人工智能风险,并整合成一个公开可访问、全面、可扩展的分类风险数据库。为业界统一定义、审计和管理人工智能风险奠定了基础。 对于从事AI安全和治理的专业人士来说,这是一个不可或缺的知识库,可用于创建自己(所在企业)的个性化风险数据库。 AI风险数据库 来源:MIT MIT科技评论的一篇文章指出,AI技术应用面临多种危险,系统可能存在偏见、传播错误信息,甚至具有成瘾性。这些风险只是冰山一角,AI还有可能被用于制造生物或化学武器,甚至在未来失控,造成难以挽回的灾难性后果。 AI风险全景图 为了满足AI风险治理的迫切需求,MIT的计算机科学与人工智能实验室(CSAIL)下属的FutureTech团队着手开发了“全覆盖”AI风险数据库。 据CSAIL网站发布的新闻,研究人员在现有的AI风险框架中发现了大量严重漏洞,现有的最详尽的AI风险框架(例如NIST、谷歌和欧盟发布的框架)也仅涵盖了所有风险的约70%。因此,项目负责人Peter Slattery博士担心决策者可能会因为认知偏差而忽略重要问题,从而形成集体决策盲区。 MIT的AI风险数据库旨在为学者、安全审计人员、政策制定者、AI公司和公众提供关于AI风险“全景图”,为研究、开发和治理AI系统提供了一个统一的参考框架。该数据库由三部分组成:AI风险数据库、AI风险因果分类法以及AI风险领域分类法,具体如下: AI风险数据库:记录了从43种现有框架中提取的700多种风险,并附有相关引用和页码。 AI风险因果分类法:分类AI风险发生的方式、时间和原因。 AI风险领域分类法:将风险分为七大领域和23个子领域,涵盖歧视与有害内容、隐私与安全、虚假信息、恶意行为者及误用、人机交互、社会经济与环境危害、AI系统安全与故障等。 转自安全内参,原文链接:https://mp.weixin.qq.com/s/mH0PKWRoOgZmPlrjsuCoTw 封面来源于网络,如有侵权请联系删除